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Dear editor,

Boolean bent functions were introduced by
Rothaus in 1976 as an interesting combinatorial
object with the important property of having op-
timal nonlinearity [1]. Since bent functions have
many applications in sequence design, cryptogra-
phy and algebraic coding, they have been exten-
sively studied during the last thirty years [2, 3].
Over the past decades, based on bent functions,
several constructions of highly nonlinear balanced
functions were presented [4, 5].

In recent years several researchers have pro-
posed generalizations of Boolean functions [6–9]
and studied the effect of the Walsh-Hadamard
transform on these classes. In [6], Schmidt p-
resented the connection between words in multi-
code code-division multiple access (MC-CDMA)
systems and generalized bent functions from Zm2 to
Z4, and considered functions from Zn2 to Zq from
the viewpoint of cyclic codes over rings. Later,
Solé and Tokareva [7] called these functions from
Zn2 to Zq generalized Boolean functions and pre-
sented the direct links between Boolean bent func-
tions and generalized bent functions. More recent-
ly, Stănică et al. [9] investigated the properties of
generalized bent functions and presented several
constructions of such generalized bent functions

for both n even and n odd. They characterized a
class of generalized bent functions symmetric with
respect to two variables and generalized bent func-
tions defined on Zn2 in Z8. However, is there a
technique that provides generalized bent functions
symmetric with respect to m variables, where m
is even? Additionally, in [9, Example 20, 21] the
authors provided an explicit construction only for
the even case. These give us a motivation to iden-
tify those generalized bent functions.

Let us denote the set of integers, real numbers
and complex numbers by Z,R and C, respectively
and let the ring of integers modulo r be denoted
by Zr. We denote the addition over Z,R and C
by ‘+’. Moreover, addition modulo q (6= 2) is al-
so denoted by ‘+’ and it is understood from the
context. Let Zn2 be the n-dimensional vector s-
pace over Z2. We denote the addition over Zn2
and Z2 by ‘⊕’. Letting ω = (ω1, . . . , ωn) and
x = (x1, . . . , xn) ∈ Zn2 , we define the inner (or
scalar) product by ω · x = ω1x1 ⊕ . . . ⊕ ωnxn. If
z = a + bi ∈ C, a, b ∈ R, then |z| =

√
a2 + b2 de-

notes the absolute value of z, where i2 = −1. We
denote the vectors (0, 0, . . . , 0) ∈ Zn2 by 0n.

A function from Zn2 to Zq (q > 2 a positive in-
teger) is called a generalized Boolean function in n
variables [7]. Let GBqn be the set of all n-variable
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generalized Boolean functions from Zn2 to Zq. If
q = 2, we obtain the classical Boolean functions in
n variables, whose set will be denoted by Bn. The
Hamming weight wt(u) of a vector u ∈ Zn2 is the
weight (number of 1’s) of the binary string.

The (generalized) Walsh-Hadamard transform
of f ∈ GBqn is the complex valued function over Zn2
which is defined by Hf (ω) =

∑
x∈Zn

2
ζf(x)(−1)ω·x

where ζ(= e2πi/q) is the complex q-primitive root
of unity. When q = 2, we obtain the Walsh trans-
form of f ∈ Bn, which will be denoted by Wf .

A generalized Boolean function f ∈ GBqn is
called generalized bent (or gbent, for short) if and
only if |Hf (ω)| = 2n/2 for all ω ∈ Zn2 . Note that
when q = 2, Boolean bent functions exists only if
the number n of variables is even. For q > 2, if f is
a gbent function in n variables, it does not follow
that n must be even. Such functions for q = 4 were
investigated by Schmidt [6], Solé and Tokareva [7],
Stănică, Martinsen, Gangopadhyay, and Singh [9],
etc.

The sum Cf,g(u) =
∑

x∈Zn
2
ζf(x)−g(x⊕u) is the

crosscorrelation of f and g at u ∈ Zn2 . The auto-
correlation of f ∈ GBqn at u ∈ Zn2 is Cf,g(u) above,
which is denoted by Cf (u).

Lemma 1. Let f ∈ GBqn. Then f is a gbent
function if and only if

Cf (u) =

{
2n, if u = 0n,

0, if u 6= 0n.

By using Lemma 1, we can prove the following
theorem.

Theorem 1. Let n be a positive integer and
m, q be even positive integers. Let f ∈ GBqn
be gbent. Let f + q

2gi ∈ GB
q
n be gbent, where

i = 0, 1. Let y = (y′,y′′), y′ = (y1, y2, . . . , ym/2),
y′′ = (ym/2+1, ym/2+2 . . . ym) and ϑ(y) = y′ · y′′.
Let c ∈ Zm2 and wt(c) be even. Then the function
h ∈ GBqn, defined by

h(x,y) = f(x) +
q

2
(c · y)gc·y(x) +

q

2
ϑ(y) (1)

is a gbent function in n+m variables.

In Table 1, we compare our approach to oth-
er methods [9, 10] in terms of the form of gbent
functions.

In what follows, we first provide some notations.
If f ∈ Bn is bent, then the dual function f̃ of

f , defined on Zn2 by Wf (ω) = 2n/2(−1)f̃(ω) is also

bent and it is known that
˜̃
f = f .

Lemma 2. For every a, b ∈ Zn2 and for ev-
ery bent function f , the dual of the function
f(x⊕ b)⊕ a · x equals f̃(x⊕ a)⊕ b · (x⊕ a).

The original Maiorana-McFarland’s (M -M)
class of bent functions is the set of all the (bent)
Boolean functions on Z2n

2 = {(x,y)|x,y ∈ Zn2} of
the form

f(x,y) = x · φ(y)⊕ g(y), (2)

where φ is any permutation of Zn2 and g ∈ Bn.
Let f ∈ Bn. If there exists an even integer 0 6

r 6 n, such that ‖{ω|Wf (ω) 6= 0,ω ∈ Fn2}‖ = 2r,
where ‖ · ‖ denotes the size (cardinality) of a set,
and (Wf (ω))2 equals 22n−r or 0, for every ω ∈ Fn2 ,
then f is called an r-order plateaued function in n
variables. If f is a 2d(n − 2)/2e-order plateaued
function in n variables, then f is also called a
semibent function.

Let f ∈ GB8
n be as

f(x) = υ0(x) + υ1(x) · 2 + υ2(x) · 22, (3)

where υi(x) ∈ Bn, i = 0, 1, 2.
In [9, Theorem 19], Stănică et al. presented a

sufficient and necessary condition for a function f
as in (3) to be gbent.

Theorem 2 ([9]). Let f ∈ GB8
n be as in (3). The

following are true:
(i) If n is even, then f is gbent if and only if

υ2, υ0 ⊕ υ2, υ1 ⊕ υ2, υ0 ⊕ υ1 ⊕ υ2 are all bent, and
Wυ0⊕υ2(u)Wυ1⊕υ2(u) = Wυ2(u)Wυ0⊕υ1⊕υ2(u)
for all u ∈ Zn2 ;

(ii) If n is odd, then f is gbent if and on-
ly if υ2, υ0 ⊕ υ2, υ1 ⊕ υ2, υ0 ⊕ υ1 ⊕ υ2 are al-
l semibent, and Wυ0⊕υ2(u) = Wυ2(u) = 0

and |Wυ1⊕υ2(u)| = |Wυ0⊕υ1⊕υ2(u)| = 2
n+1
2 ;

or, |Wυ0⊕υ2(u)| = |Wυ2(u)| = 2
n+1
2 and

Wυ1⊕υ2(u) =Wυ0⊕υ1⊕υ2(u) = 0, for all u ∈ Zn2 .

From the above theorem, we know that the suf-
ficient conditions that a function f as in (3) is
gbent are abstract. Hence, we provide some suf-
ficient conditions for a function f as in (3) to be
gbent.

Theorem 3. Let n be an even integer,
υ0, υ1, υ2 ∈ Bn and f ∈ GB8

n be as in (3). The
following υ0, υ1, υ2 satisfy the sufficient conditions
of Theorem 2 for the even case.

(i) Let υ0, υ1, υ2 be bent functions and υ2, υ0 ⊕
υ2, υ1 ⊕ υ2, υ0 ⊕ υ1 ⊕ υ2 be all bent, and
˜(υ0 ⊕ υ2)(x) = υ̃0(x) ⊕ υ̃2(x), ˜(υ1 ⊕ υ2)(x) =

υ̃1(x)⊕υ̃2(x), ˜(υ0 ⊕ υ1 ⊕ υ2)(x) = υ̃0(x)⊕υ̃1(x)⊕
υ̃2(x).

(ii) Let υ2 ∈ Bn be a bent function, υ0 = υ1 and
υ0 ⊕ υ2 be bent.

(iii) Let υ0(x) = a0 · x and υ1(x) = a1 · x re-
spectively, be two linear functions. Let υ2 ∈ Bn be
a bent function, and υ̃2(x)⊕ υ̃2(x⊕ a0)⊕ υ̃2(x⊕
a1)⊕ υ̃2(x⊕ a0 ⊕ a1) = 0.
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Table 1 Form of gbent functions comparison

Number of variables q From Resource

n + 2 2 h(x,y) = f(x) ⊕ (y1 ⊕ y2)g(x) ⊕ y1y2 Ref. [10]

n + 2 Even integer h(x,y) = f(x) + (y1 ⊕ y2)g(x) + q
2
y1y2 Ref. [9]

n + m Even integer h(x,y) = f(x) + q
2

(c · y)gc·y(x) + q
2
ϑ(y) New

(iv) Let υ0(x) = a0 ·x, be a linear function. Let
υ2 ∈ Bn be a bent function, υ1 ⊕ υ2 be bent and

υ̃2(x)⊕ υ̃2(x⊕a0)⊕ ˜(υ1 ⊕ υ2)(x)⊕ ˜(υ1 ⊕ υ2)(x⊕
a0) = 0.

We now discuss the case when n is odd. Let
n be a positive odd integer and g1, g2 ∈ Bn. We
say that g1 and g2 are complementary semibent
functions in n variables if they are semibent (that
is, (n − 1)-order plateaued) functions and satis-
fy the property that Wg1(ω) = 0 if and only if
Wg2(ω) 6= 0.

Lemma 3. Let n be an even integer and f ∈
Bn. Then f is bent if and only if the two
functions on Zn−1

2 , f(x1, . . . , xj−1, 0, xj+1, . . . , xn)
and f(x1, . . . , xj−1, 1, xj+1, . . . , xn), are comple-
mentary semibent functions on Zn−1

2 , where j =
1, . . . , n.

Theorem 4. Let k, n be two integers and n =
2k − 1. Let ϕ = (ϕ1, . . . , ϕk), φ = (φ1, . . . , φk)
be Boolean maps from Zk2 to Zk2 such that both
φ and φ ⊕ ϕ = (φ1 ⊕ ϕ1, . . . , φk ⊕ ϕk) are per-
mutations on Zk2 . Set ∆j = {φ(y)|y ∈ Zj−1

2 ×
{0} × Zk−j2 }, y

(j)
ε = (y1, . . . , yj−1, ε, yj+1 . . . , yk),

where ε ∈ Z2, j = 1, 2, · · · , k. Let f ∈ GB8
n be as

in (3), and let υ0(x,y
(j)
0 ) = a0 · x ⊕ ϕ(y

(j)
0 ) · x,

υ1(x) =
(
φ(y

(j)
0 )⊕ φ(y

(j)
1 )
)
·x⊕ g(y

(j)
0 )⊕ g(y

(j)
1 )

and υ2(x) = φ(y
(j)
0 )·x⊕g(y

(j)
0 ), where a0 ∈ Zk2 . If

there exists one positive integer %(6 k) such that

{(φ⊕ ϕ)(y)|y ∈ Z%−1
2 × {0} × Zk−%2 } = ∆% (4)

(if a0 6= 0k we further require ∆% to be a linear
subspace of Zk2 and a0 ∈ ∆%), then υ0, υ1, υ2 sat-
isfy the conditions of Theorem 2 for the odd case,
that is, f is gbent.
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